AMWEI thermistor Sensor-China manufacturer of PTC NTC thermistors,temperature sensor probe, Pressure Sensor  
MAIN   |  PRODUCTS   |  ABOUT US   |  CONTACT US

Thermistors Search
Thermistors Sort:
Keyword:
 
Technical Information
NTC Thermistor
Inrush Current Limit N...
NTC Thermistors Charac...
NTC Sensor Select Refe...
NTC Thermistor Tempera...
NTC Thermistor Manufac...
NTC PTC Thermistors Li...
PTC NTC Thermistors Co...
NTC thermistors Chargi...
PTC Thermistor
PTC Thermistors Manufa...
PTC Thermistors Glossa...
PTC Thermistors Charac...
PTC Thermistors Protec...
PTC Limit Temperature ...
PTC thermistors Limit ...
PTC Thermistor Overloa...
PTC Thermistor Protect...
PTC Thermistor Current...
PTC Thermistors Applic...
 
 /  PTC Thermistor  /  NTC Thermistor  /  Pressure Sensors

PTC thermistors Limit Temperature Sensor for thermal monitoring makes hot spots under control

PTC Thermistors Limit Temperature Sensor have a nonlinear characteristic: at low temperatures such as ambient, their resistance is low. As the temperature rises, their resistance jumps suddenly depending on the ceramic material used. This threshold value is also known as the reference or limit temperature. Figure 1 shows the typical characteristic of a PTC thermistor.
Figure 1: PTC Thermistor Characteristics Temperature vs. Resistance Curves
PTC Thermistor Characteristics Temperature vs. Resistance Curves
At normal temperatures, the PTC sensor has a low resistance with a typical value of less than 1k ohm. As the temperature rises, however, its resistance begins to increase. When the specified limit temperature TSense is reached, its resistance jump with respect to the temperature rise. This sudden increase in resistance makes PTC thermistors ideal as limit temperature sensors, allowing them to detect the critical temperature of sensitive electronic components in good time. For this purpose, they should be mounted as close as possible to the component they are designed to protect. This assures good thermal contact as well as a fast response time.

As shown in Figure 2, the PTC sensor is normally inserted together with a fixed resistor into a voltage division circuit. This results in a temperature-dependent output voltage Vout, which changes suddenly according to the characteristic of the PTC sensor and directly controls a component such as a switching transistor or comparator. This in turn triggers corresponding functions in order to avoid overheating and consequent damage. In this way, a blower can be switched in or loads and system components switched off very cost effectively.

Figure 2: Circuit for PTC thermistor detecting over-temperatures
Circuit for PTC thermistor detecting over-temperatures
This simple circuit can be used to monitor a single hot spot cost-efficiently and reliably.
PTC thermistors temperature measurement at several hot spots
The steep and rapid change in resistance of PTC sensors with temperature allows several hot spots to be monitored with a simple circuit. For instance, if seven different points have to be monitored simultaneously on a circuit board or in an item of equipment, the circuit shown in Figure 3 is an obvious choice. A single PTC is located at every point to be monitored. Thanks to their steep characteristic, all PTCs can be connected in series while assuring reliable monitoring of each individual hot spot.
Circuit of PTC thermistors temperature measurement at several hot spots
Despite the series circuit, reliable measurement of over-temperatures is possible at each hot spot. This circuit topology permits cost-effective, space-saving and reliable temperature management.
This circuit can be used for the systems such as power supplies, UPS, frequency converters, servers, light controllers and systems of automotive electronics. Very often, the hot spots at which power losses can lead to the occurrence of over-temperatures are power semiconductors such as MOSFETs or IGBTs, but they may also be inductors, transformers, capacitors and motors, etc.

date: 2013-9-27


MAIN  |  PRODUCTS  |  ABOUT US  |  CONTACT US     AMWEI Thermistor on FacebookAMWEI Thermistor on twitterLinkedin AMWEI ThermistorGoogle+ AMWEI Thermistor © 2017 Copyright by AMWEI Thermistor Sensor